
Verilog AHB Testbench
User's Guide

Document version: 1.0

Document date: March 2010

Pulse Logic

www.pulselogic.com.pl

e-mail: info@pulselogic.com.pl

Digital Logic and Electronic Systems
Design Company

Verilog AHB Testbench

Table of Contents
1. AHB Bus Testbench Introduction ..3
2. How To Use This Testbench...5
3. How To Download The Testbench Files...5
4. Limitations Of AHB Testbench..5
5. AHBMaster Module...6
6. AHBSlave Module..9
7. AHBSlaveDummy Module..10
8. AHBDecoder Module...10
9. AHBArbiter Module ..12
10. AHBMasterToSlave Module..13
11. AHBSlaveToMaster Module..15
12. AHBMasterToArbiter Module..17
13. License..18
14. Trademarks...18

Pulse Logic Page: 2

Verilog AHB Testbench

1. AHB Bus Testbench Introduction
The AHB bus testbench is written in Verilog-2001 HDL language. All sub modules of the testbench
except AHBMaster are synthesizable and can be used for testing and also can be implemented to
target FPGA or ASIC devices. The testbench is parametrized. It is easy to expand the testbench and
add more masters or slaves. Each module has parameters allowing quick expansion. Operations of
the AHB master modules can be customized by defining AHB transfers in a text file. A User may
add other modules to the testbench or replace existing modules and test them together to check if
they correctly respond to different AHB transfers from multiple AHB masters. The testbench was
designed to maximally stress the tested units. All the units must respond in the requested time.
However, the bus cycles are always compatible with AMBATM Specification Rev 2.0 and any
differences with the specification in timing of the AHB signals should be treated as a bug in the
testbench or in a tested unit. The testbench consists of the following files:

File Type Description

defs.v RTL Code Definition of constants

FileRead_obf.v Obfuscated
behavioral Code

Module for parsing and reading input text
file for AHB master

AHBSlaveDummy_obf.v Obfuscated RTL code AHB dummy slave

AHBSlave_obf.v Obfuscated RTL code AHB slave - synchronous RAM memory

AHBDecoder_obf.v Obfuscated RTL code AHB decoder

AHBArbiter_obf.v Obfuscated RTL code AHB arbiter

AHBMaster_obf.v Obfuscated
behavioral Code

AHB master bus functional model

AHBMasterToSlave_obf.v Obfuscated RTL code AHB master to slave multiplexing unit

AHBSlaveToMaster_obf.v Obfuscated RTL code AHB slave to master multiplexing unit

AHBMasterToArbiter_obf.v Obfuscated RTL code AHB master to arbiter multiplexing unit

AHBBusSystem.v RTL Code RTL Top level module connecting all units

AHBBusSystem_TB.v Behavioral Code Top level module driving clocks and resets
of all the units

runme.do Script file Compilation script file

input_1.txt Text file Input file with AHB transfers definition for
Master 1.

input_2.txt Text file Input file with AHB transfers definition for
Master 2.

pattern_1.txt Text file Pattern file with responses from Master 1.

pattern_2.txt Text file Pattern file with responses from Master 2.
Table 1. AHB Testbench files

Compilation order and simulation initialization is defined in the runme.do file. This is Mentor
ModelsimTM script file format. It can be easy rewritten to Synopsys VCSTM, Cadence NC-SimTM or
Aldec Active-HDLTM compilation script file. The testbench consists of the following units:

Pulse Logic Page: 3

Verilog AHB Testbench

• AHBSlaveDummy
• AHBSlave
• AHBDecoder
• AHBArbiter
• AHBMaster
• AHBMasterToSlave
• AHBSlaveToMaster
• AHBMasterToArbiter

Figure 1. Block diagram of AHB Testbench

The figure above shows interconnections between all the units. The AHB bus does not have any
three-state signals and multiplexing units must be used to connect multiple masters and slaves units.
Each unit from the figure will be separately described in the following chapters.

Pulse Logic Page: 4

AHBSlaveToMaster

AHBSlaveToMaster

AHBMaster AHBMasterToSlave

AHBMasterToSlave

AHBMasterToSlave

AHBDummySlave

AHBMaster

AHBSlave

AHBSlave

AHBArbiter

AHBMasterToArbiter AHBDecoder

Verilog AHB Testbench

2. How To Use This Testbench
The figure above shows an example of AHB bus system. The system consists of two AHB masters
and two AHB slaves. AHB arbiter is also needed because two masters may access the same slave at
the same time and only one of them can be granted. Similarly, AHB decoder is used to check, which
slave is currently addressed by the granted master. Such system is implemented in AHBBusSystem.v
file. The AHBBusSystem.v file contains instances of all the mentioned AHB modules connected like
in the figure above. More detailed description of all the modules is available in the following
chapters.
You can run simulation of this system to check how all the modules operate in the system. Script
files and configuration files for AHB masters are provided as mentioned in the previous chapter.
Please, remember that all the multiplexing units are highly optimized to avoid any dead cycles on
the bus. The transfers from two masters are parallelized if possible to archive best performance of
the system. Analyzing the multiplexing units may be difficult. It is much easier to observer interface
of selected slave or master. Each AHB master writes information about performed transfer to a log
file. The easiest method of analyzing operations of the AHB master is by reviewing the log file.
Once you are familiar with operation of the testbench and their modules you can start with
modification of the testbench architecture. You can do the following:

• Replace one of existing masters or slaves in the testbench with yours module
• Add a new master or slave to the testbench
• Change address locations of the AHB slaves
• Customize input file with transfers definition for AHB masters

The first three items from the above list can be done by modifications of the AHBBusSystem.v file.
You can add, remove or replace some instances in the file. If you expand the system by adding more
masters or slaves you must also configure the multiplexing units including AHB arbiter and
decoder. The units have appropriate parameters that needs to be adjusted for given number of
masters and slaves in the system. More information about parameters of the units is available in the
following chapters.
Similarly, customization of the input file with transfers definition for AHB masters is described in
the AHBMaster chapter.

3. How To Download The Testbench Files
The testbench is available for free under modified BSD license. Click the following link to
download testbench files:

http://www.pulselogic.com.pl/files/ahbTestbench_obf.zip

4. Limitations Of AHB Testbench
The following functionality was not implemented in the AHB testbench:

• Split transfers
• Retry transfers
• Early burst termination

The testbench is available for free with one limitation. Most of the testbench files are obfuscated. It
means that comments and text formating ware removed from the files and most of identifiers ware
replaced with automatically generated strings. It makes the files very difficult to read or modify.
However, the files are fully functional and should work correctly with any simulation or synthesis
tool. The original testbench files are not available for free.

Pulse Logic Page: 5

Verilog AHB Testbench

5. AHBMaster Module
The AHBMaster module implements functionality of AHB master device. It is able to initiate
transfers on AHB bus and write or read data from AHB slaves. The following tables show interface
of the AHBMaster module:

Parameter Value Description

P_IN_FILENAME "input.txt" Input file name with definition of bus cycles

P_OUT_FILENAME "output.txt
"

Output log file name

P_MASTER_NAME "master" Master name used for identifying messages from a master
instance

P_STOP_SIM_AT_EOF 1 If not equal to '0' the $stop is called when end of input file
is reached.

Table 2. Parameters of AHBMaster module

Port Direction Description

HCLK IN Clock

HRESETn IN Reset

HBUSREQ OUT AHB bus request

HLOCK OUT AHB locked transfer

HGRANT IN AHB bus grant

HTRANS [1 : 0] OUT AHB transfer type signal

HBURST [2 : 0] OUT AHB burst type signal

HSIZE [2 : 0] OUT AHB transfer size

HADDR [31 : 0] OUT AHB address bus

HPROT [3 : 0] OUT AHB protection control

HWDATA [31 : 0] OUT AHB write data bus

HWRITE OUT AHB transfer direction signal

HRDATA [31 : 0] IN AHB read data bus

HRESP [1 : 0] IN AHB transfer response signal

HREADY IN AHB transfer done signal
Table 3. Interface signals of AHBMaster module

The AHBMaster module is a typical bus functional model. The AHBMaster reads commands from
input text file defined by P_IN_FILENAME parameter. The input file contains definition of AHB
bus transfers that should be generated on the AHB bus. The AHBMaster module records all
operation in a log file specified by P_OUT_FILENAME parameter. It also prints some messages on
simulator console. It is useful to select different name for each master instance using
P_MASTER_NAME parameter. It allows easier identification of messages from given master on
simulator console. Each master may optionally stop simulation if P_STOP_SIM_AT_EOF
parameter is set to one. The AHBMaster module calls $stop task after reaching end of input file

Pulse Logic Page: 6

Verilog AHB Testbench

when P_STOP_SIM_AT_EOF parameter equal to one.
The interface of AHBMaster module consists of AHB signals. Please, refer to AMBATM

Specification Rev 2.0 for more details on AHB signals and protocol of operations.

A User does not need to know functionality of the AHBMaster module. A User may customize
AHBMaster module operation by providing input file with transfers definition. The input file is a
simple text file where AHB transfers are defined using very simple format. The design contains two
sample input files input_1.txt and input_2.txt that can be used as reference. Below is description of
the input file format.
There are two possible line types in the input file:

• COMMAND line. Defines AHB transfer that should be generated
• DATA line. Defines data that should be sent over AHB bus when AHBMaster module

performs write transfer
The command line starts from COMMAND keyword followed by semicolon and list of parameters
defining AHB transfer. The data line starts from DATA keyword followed by semicolon and
hexadecimal data word that should be transferred over AHB bus. Below is an example of command
and data line:

COMMAND: WRITE BITS32 SINGLE LENGTH: 0 PROT: 0 ADDRESS: 00000000 BREQ_DELAY: 8
DATA: 00000000

In case of burst transfer the command line must be followed by multiple data lines defining all data
words that must be transferred during the burst cycle. Below is en example of four beats burst
transfer definition:

COMMAND: WRITE BITS32 INCR4 LENGTH: 0 PROT: 0 ADDRESS: 00000080 BREQ_DELAY: 18
DATA: 00000020
DATA: 00000021
DATA: 00000022
DATA: 00000023

The command line need seven parameters defining AHB transfer. The order of parameters is
important and must be always the same. The following is the list of the parameters in appropriate
order:

• Transfer direction
• Transfer size
• Burst type
• Length of transfer for INCR bursts
• Protection control
• Start address
• Delay of next bus request

Transfer direction parameter specifies direction of the AHB transfer. It has two possible values:
• WRITE
• READ

Please, remember than any transfer with WRITE direction should be followed by appropriate
number of DATA lines.
Transfer size parameter specifies size of the AHB transfer. The following is the list of all possible
values of the parameter according to AMBATM Specification Rev 2.0:

• BITS8
• BITS16

Pulse Logic Page: 7

Verilog AHB Testbench

• BITS32
• BITS64
• BITS128
• BITS256
• BITS512
• BITS1024

The testbench was tested with 32 bits size of the data bus. The following transfer size parameter
values are suitable for 32 bits data bus:

• BITS8 – one byte
• BITS16 – half word
• BITS32 – word

Other values of the parameter should not be used with 32 bits data bus.

The burst type parameter defines eight possible burst transfers
• SINGLE – Single transfer
• INCR – Incrementing burst of unspecified length
• WRAP4 – 4-beat wrapping burst
• INCR4 – 4-beat incrementing burst
• WRAP8 – 8-beat wrapping burst
• INCR8 – 8-beat incrementing burst
• WRAP16 – 16-beat wrapping burst
• INCR16 –16-beat incrementing burst

Please, refer to AMBATM Specification Rev 2.0 for more details on burst transfers. The INCR
transfer is a burst with unspecified length. The length of this transfer should be specified using
LENGTH parameter.

The length parameter should be always set to zero except burst transfers of INCR type. Other burst
transfers have strictly specified length. The AHBMaster module need to know the transfer length
upfront. The LENGTH parameter should be always specified when INCR burst transfer is defined.
The length parameter defines length of the transfer.

The protection control parameter can be used to provide additional information about bus access.
The parameter indicates if the transfer is:

• an opcode fetch or data access
• a privileged mode access or user mode access.

The parameter is useful for modules that implement some level of protection. Please, refer to
AMBATM Specification Rev 2.0 for more details on protection control.

The start address parameter defines start adders for the transfer. Each read or write transfer starts
from the specified start address. In case of burst transfers the adders is incremented for subsequent
beats of the burst according to burst type and transfer size parameters. Please, refer to AMBATM

Specification Rev 2.0 for more details on addressing during burst transfers.

The last parameter defines delay of the next bus request. It defines in clock cycles delay between
start of the current transfer and start of the bus request for the next transfer. The parameter can be
used to postpone the next transfer an force IDLE state on the bus. The AHBMaster starts current

Pulse Logic Page: 8

Verilog AHB Testbench

transfer and keeps bus request line inactive until the requested delay elapsed. If the bus transfer is
finished before the requested delay elapsed the AHBMaster module drives IDLE state on the AHB
bus. The AHBMaster module applies the bus request immediately after the delay period expired. It
does not have to wait until current transfer is completed. The AHB bus allows to request access to
the bus any time during a transfer.

6. AHBSlave Module
The AHBSlave module is an example of simple AHB slave. This module implements synchronous
RAM memory with AHB interface. The following tables show interface of the module.

Parameter Value Description

P_ADDR_SIZE 1024 Size of occupied address space

P_WAIT_STATES 5 Number of inserted wait state cycles
Table 4. Parameters of AHBSlave module

Port Direction Description

HCLK IN Clock

HRESETn IN Reset

HSEL IN AHB slave select signal

HTRANS [1 : 0] IN AHB transfer type signal

HBURST [2 : 0] IN AHB burst type signal

HSIZE [2 : 0] IN AHB transfer size

HADDR [31 : 0] IN AHB address bus

HPROT [3 : 0] IN AHB protection control

HWDATA [31 : 0] IN AHB write data bus

HWRITE IN AHB transfer direction signal

HRDATA [31 : 0] OUT AHB read data bus

HRESP [1 : 0] OUT AHB transfer response signal

HREADY OUT AHB transfer done signal
Table 5. Interface signals of AHBSlave module

The P_ADDR_SIZE parameter defines number of words of the RAM memory. It also determines
address space occupied by the RAM memory.
The P_WAIT_STATES parameters defines delay in clock cycles for transfer done signal. The RAM
memory may respond with requested delay to test behavior of other modules in AHB testbench.
The AHBSlave module has only AHB signals in its interface. You can find description of the signals
in AMBATM Specification Rev 2.0 document. All the signals should work as stated in the AMBATM

Specification Rev 2.0 document.

Pulse Logic Page: 9

Verilog AHB Testbench

7. AHBSlaveDummy Module
The dummy slave is very important for operations of AHB bus. The dummy slave is selected if
current address on AHB bus is not assigned to any device. It means, that AHB master is trying to
communicate with invalid address. The AHB decoder module selects currently addressed slave by
applying active state on its HSEL signal. The AHB decoder has information what address space is
assigned to each slave. The address from AHB master is compared to find, which slave is addressed
and after that, HSEL signal is applied. If AHB decoder detects an address that is not assigned to any
device, it selects the dummy slave. The dummy slave responds always with bus error on any type of
transfer from AHB master. It allows the master to complete the transfer and detect that invalid
address was selected.
Interface of the AHBSlaveDummy module is shown in the tables below:

Port Direction Description

HCLK IN Clock

HRESETn IN Reset

HSEL IN AHB slave select signal

HTRANS [1 : 0] IN AHB transfer type signal

HBURST [2 : 0] IN AHB burst type signal

HSIZE [2 : 0] IN AHB transfer size

HADDR [31 : 0] IN AHB address bus

HPROT [3 : 0] IN AHB protection control

HWDATA [31 : 0] IN AHB write data bus

HWRITE IN AHB transfer direction signal

HRDATA [31 : 0] OUT AHB read data bus

HRESP [1 : 0] OUT AHB transfer response signal

HREADY OUT AHB transfer done signal
Table 6. Interface signals of AHBSlaveDummy module

The AHBSlaveDummy module has only AHB signals in its interface. You can find description of
the signals in AMBATM Specification Rev 2.0 document. All the signals should work as stated in the
AMBATM Specification Rev 2.0 document.

8. AHBDecoder Module
The AHBDecoder module is used to decode address from currently granted master and select
addressed slave by applying appropriate HSEL line. The AHBDecoder module must be aware what
address space is assigned to each slave. The dummy slave can be selected, if the AHB master
module applies invalid address that does not refer to any slave in the testbench. The following table
shows interface of the AHBDecoder module:

Pulse Logic Page: 10

Verilog AHB Testbench

Parameter Value Description

P_SLAVES_NUM 2 Number of AHB slaves in the
testbench excluding dummy slave

P_ADDR_BASE_LSB 12 LSB address line used for
selecting slaves

P_ADDR_BASE_MSB clog2(P_SLAVES_NUM-1) +
P_ADDR_BASE_LSB - 1

MSB address line used for
selecting slaves

Table 7. Parameters of AHBDecoder module

Port Direction Description

HTRANS [1 : 0] IN AHB transfer type signal

HADDR [31 : 0] IN AHB address bus

HMASTER_VALID IN High state indicates that HMASTER signal is
valid

HSEL [P_SLAVES_NUM-1 : 0] OUT AHB select signals for all slaves in the
testbench

HSEL_DUMMY OUT AHB dummy slave select
Table 8. Interface signals of AHBDecoder module

The P_SLAVES_NUM parameter defines number of slaves in the AHB testbench excluding dummy
slave. The dummy slave is always present. The P_ADDR_BASE_LSB and P_ADDR_BASE_MSB
parameters define slice of the address bus that is used to select the slaves. For example, if
P_SLAVES_NUM parameter is set to 4, it means that 4 slaves are connected to the AHB bus plus
the dummy slave. The P_ADDR_BASE_LSB is set by default to 12 and P_ADDR_BASE_MSB
should be set to 13 to allow addressing the 4 slaves. In such configuration the AHB decoder is
checking bit 12 and 13 of the address bus and selects appropriate slave. The following table shows
how the slaves are selected:

AHB Address AHB select signal Description

HADDR[13 : 12] == 0 HSEL[0] = 1 Slave number 0 selected

HADDR[13 : 12] == 1 HSEL[1] = 1 Slave number 1 selected

HADDR[13 : 12] == 2 HSEL[2] = 1 Slave number 2 selected

HADDR[13 : 12] == 3 HSEL[3] = 1 Slave number 3 selected
Table 9. Selecting slaves algorithm

The AHB decoder monitors HTRANS lines to detect valid address on HADDR bus. If the valid
address is detected the AHB decoder activates appropriate HSEL line and applies active high state
on HMASTER_VALID signal. The dummy slave has separate HSEL_DUMMY line. The line is
selected if current address is not valid or bus is in the idle state.

Pulse Logic Page: 11

Verilog AHB Testbench

9. AHBArbiter Module
The AHB arbiter module is the most complicated unit in the testbench. It is responsible for
analyzing bus requests from all masters and granting access to the bus for the highest priority
master. The arbiter uses rotating priority algorithm to select master with the highest priority. If a
grant was given to selected master the lowest priority is assigned to the master. This algorithm is
known also as round robin algorithm. There are no devices on the bus that have permanently higher
priority than others. All devices requesting the bus have the same priority and the same chances to
get access to the bus. The following tables show interface of the AHBArbiter module:

Parameter Value Description

P_MASTERS_NUM 2 Number of AHB masters in the testbench

P_SLAVES_NUM 2 Number of AHB slaves in the testbench
excluding dummy slave

Table 10. Parameters of AHBArbiter module

Port Direction Description

HCLK IN Clock

HRESETn IN Reset

HBUSREQ
[P_MASTERS_NUM - 1 : 0]

IN AHB bus requests signals from all masters in
the testbench

HLOCK [P_MASTERS_NUM - 1 : 0] IN AHB locked transfer signals from all masters
in the testbench

HGRANT [P_MASTERS_NUM - 1 :
0]

OUT AHB bus grant signals for all masters in the
testbench

HTRANS [1 : 0] IN AHB transfer type signal

HBURST [2 : 0] IN AHB burst type signal

HADDR [31 : 0] IN AHB address bus

HSEL [P_SLAVES_NUM-1 : 0] IN AHB select signals for all slaves in the
testbench

HREADY_MST
[P_MASTERS_NUM-1 : 0]

IN AHB transfer done signals connected to all
masters in the testbench

HREADY_SLV
[P_SLAVES_NUM : 0]

IN AHB transfer done signals from all slaves in
the testbench

HMASTER
[clog2(P_MASTERS_NUM-1)-1 : 0]

OUT Number of the granted AHB master

HMASTER_VALID OUT High state indicates that HMASTER signal is
valid

Table 11. Interface signals of AHBArbiter module

The P_MASTERS_NUM and P_SLAVES_NUM define number of masters and slaves in the
testbench.
The HBUSREQ lines are used to request access to the bus. The AHB arbiter module selects master

Pulse Logic Page: 12

Verilog AHB Testbench

with the highest priority and responds with active state on the HGRANT lines. Only one bit of the
HGRANT bus is active at a time granting access to the bus to the highest priority master.
 The AHB arbiter must be aware what type of transfer is currently performed on the bus. It monitors
constantly HTRANS and HBURST lines. It must also detect end of current transfer to grant new
master at appropriate time. This is why the arbiter monitors HREADY signals. The HMASTER
signal is used to switch multiplexing units on the bus. Once a master is granted the HMASTER
signal is updated and indicates number of currently granted master. All the multiplexing units can
switch and redirect the AHB traffic to the granted master. The multiplexing units are described in
the next chapters.

10. AHBMasterToSlave Module
The AHBMasterToSlave module is a multiplexing unit that takes outputs from all AHB masters and
passes outputs of currently granted master to connected AHB slave. Each AHB slave has separate
AHBMasterToSlave module. It allows to parallelize transfers from different masters to different
slaves. The interface of AHBMasterToSlave module is shown in the tables below.

Parameter Value Description

P_MASTERS_NUM 2 Number of AHB masters in the testbench
Table 12. Parameters of AHBMasterToSlave module

Port Direction Description

HCLK IN Clock

HRESETn IN Reset

HSEL IN AHB slave select signal

HTRANS_IN [1 : 0] IN AHB transfer type from currently granted
master

HMASTER
[clog2(P_MASTERS_NUM-1)-1 : 0]

IN Number of the granted AHB master

HMASTER_VALID IN High state indicates that HMASTER signal is
valid

HREADY IN AHB transfer done from slave

Outputs of all AHB Masters

HTRANS_ARR
[(P_MASTERS_NUM * 2)-1 : 0]

IN AHB transfer type signals from all masters

HSIZE_ARR
[(P_MASTERS_NUM * 3)-1 : 0]

IN AHB transfer size signals from all masters

HBURST_ARR
[(P_MASTERS_NUM * 3)-1 : 0]

IN AHB burst type signals from all masters

HPROT_ARR
[(P_MASTERS_NUM * 4)-1 : 0]

IN AHB protection control signals from all
masters

HADDR_ARR
[(P_MASTERS_NUM * 32)-1 : 0]

IN AHB address buses from all masters

HWDATA_ARR IN AHB write data buses from all masters

Pulse Logic Page: 13

Verilog AHB Testbench

[(P_MASTERS_NUM * 32)-1 : 0]

 HWRITE_ARR
[P_MASTERS_NUM-1 : 0]

IN AHB transfer direction signals from all
masters

Outputs of currently granted master

HTRANS [1 : 0] OUT AHB transfer type signal for selected slave

HSIZE [2 : 0] OUT AHB transfer size signal for selected slave

HBURST [2 : 0] OUT AHB burst type signal for selected slave

HPROT [3 : 0] OUT AHB protection control signal for selected
slave

HADDR [31 : 0] OUT AHB address bus signal for selected slave

HWDATA [31 : 0] OUT AHB write data bus signal for selected slave

HWRITE OUT AHB transfer direction signal for selected
slave

Table 13. Interface signals of AHBMasterToSlave module

The P_MASTERS_NUM parameter defines number of AHB masters in the testbench. The
AHBMasterToSlave module monitors the following lines to detect when current transfer is
completed and new master is granted:

• HSEL – select signal for slave connected to the AHBMasterToSlave module
• HTRANS_IN – transfer type from currently granted master
• HMASTER – Number of the currently granted AHB master
• HMASTER_VALID – HMASTER valid signal
• HREADY – transfer done signal from slave connected to the AHBMasterToSlave module

Once the new master is granted the AHBMasterToSlave module passes its outputs to connected
AHB slave. Outputs from all AHB masters are organized as the following vectors:

• HTRANS_ARR
• HSIZE_ARR
• HBURST_ARR
• HPROT_ARR
• HADDR_ARR
• HWDATA_ARR
• HWRITE_ARR

Outputs from AHB master zero should occupy the least significant bits of the vectors. Outputs of
the master with the highest number should occupy most significant bits of the vectors. The
AHBMasterToSlave module uses HMASTER lines for selecting appropriate bit or slice from the
above vectors. Finally, outputs from currently granted master appear on the following signals:

• HTRANS
• HSIZE
• HBURST
• HPROT
• HADDR

Pulse Logic Page: 14

Verilog AHB Testbench

• HWDATA
• HWRITE

The signals are connected to one of AHB slaves available in the testbench. Adding a slave to the
testbench requires also adding dedicated AHBMasterToSlave module connected with this slave.

11. AHBSlaveToMaster Module
The AHBSlaveToMaster module is a multiplexing unit that takes outputs of all AHB slaves and
passes outputs of selected slave to granted master. Each AHB master has dedicated
AHBSlaveToMaster module. The interface of AHBSlaveToMaster module is shown in the tables
below.

Parameter Value Description

P_MASTERS_NUM 2 Number of AHB masters in the testbench

P_SLAVES_NUM 2 Number of AHB slaves in the testbench
excluding dummy slave.

P_MASTER_ADDR 0 Address of the master on arbiter's HMASTER
bus.

Table 14. Parameters of AHBSlaveToMaster module

Port Direction Description

HCLK IN Clock

HRESETn IN Reset

HTRANS [1 : 0] IN AHB transfer type signal

HMASTER
[clog2(P_MASTERS_NUM-1)-1 : 0]

IN AHB master number

HMASTER_VALID IN High state indicates that HMASTER signal is
valid

HBUSREQ
[P_MASTERS_NUM - 1 : 0]

IN AHB bus requests signals from all masters in
the testbench

HGRANT
[P_MASTERS_NUM - 1 : 0]

IN AHB bus grant signals for all masters in the
testbench

HSEL [P_SLAVES_NUM-1 : 0] IN AHB slave select signals for all slaves in the
testbench

HREADY_SLV [P_SLAVES_NUM :
0]

IN AHB transfer done signals from all slaves in
the testbench

HRDATA_ARR
[((P_SLAVES_NUM+1) * 32)-1 : 0]

IN AHB read data buses from all slaves

HRESP_ARR
[((P_SLAVES_NUM+1) * 2)-1 : 0]

IN AHB transfer response signals from all slaves

HREADY_M OUT AHB transfer done signal for connected
master

Pulse Logic Page: 15

Verilog AHB Testbench

HRDATA_M OUT AHB read data bus for connected master

HRESP_M OUT AHB transfer response signal for connected
master

Table 15. Interface signals of AHBSlaveToMaster module

The P_MASTERS_NUM parameter defines number of AHB masters in the testbench. The
P_SLAVES_NUM parameter defines number of AHB slaves in the testbench excluding dummy
slave. The P_MASTER_ADDR defines number of the master that is connected to the
AHBSlaveToMaster module. This parameter is compared with HMASTER signal. If state of the
HMASTER signal is equal to P_MASTER_ADDR, the AHBSlaveToMaster module assumes that
master connected to its outputs is currently granted. In order to operate correctly the
AHBSlaveToMaster module must monitor the bus to get the following information :

• Which AHB master is currently granted
• Which AHB slave is currently selected
• What transfer type is currently performed on the bus

The AHBSlaveToMaster module monitors the following AHB signals to get the required
information about performed transaction on the bus:

• HBUSREQ
• HGRANT
• HSEL
• HTRANS
• HMASTER
• HMASTER_VALID

If the AHBSlaveToMaster module detects that its master is currently granted, it checks what slave
is accessed by the master and passes outputs from the slave to the master. The following signals
from all slaves are multiplexed by AHBSlaveToMaster unit:

• HREADY_SLV - vector of HREADY signals from all slaves
• HRDATA_ARR – vector of HRDATA signals from all slaves
• HRESP_ARR – vector of HRESP signals from all slaves

Outputs of the AHB dummy slave should occupy the last significant bits of the vectors. Next,
should be placed the outputs of slave that is selected by HSEL[0] line and in turn slave selected by
HSEL[1], ... HSEL[P_SLAVES_NUM – 1]. The same order must be preserved on HSEL and
HREADY_SLV, HRDATA_ARR, HRESP_ARR signals because HSEL signal is used to select
appropriate slice from the vectors for given slave.
The AHBSlaveToMaster module detects that its master is granted and checks which slave is
addressed by monitoring HSEL lines. The outputs of the addressed slave are passed to the master
using the following signals connected directly to the master:

• HREADY_M
• HRDATA_M
• HRESP_M

Each slave in the testbench should be connected to all AHBSlaveToMaster units. Adding a master
to the testbech requires adding dedicated AHBSlaveToMaster units connected with this master.

Pulse Logic Page: 16

Verilog AHB Testbench

12. AHBMasterToArbiter Module
The AHBMasterToArbiter module is a multiplexing unit that takes outputs of all AHB masters and
passes outputs of currently granted master to the AHB arbiter. This is asynchronous multiplexing
unit. The interface of the AHBMasterToArbiter module is shown in the tables below:

Parameter Value Description

P_MASTERS_NUM 2 Number of AHB masters in the
testbench

Table 16. Parameters of AHBMasterToArbiter module

Port Direction Description

HMASTER
[clog2(P_MASTERS_NUM-1)-1 : 0]

IN Number of the granted AHB master

HTRANS_ARR
[(P_MASTERS_NUM * 2) - 1 : 0]

IN AHB transfer type signals from all masters

HBURST_ARR
 [(P_MASTERS_NUM * 3) - 1 : 0]

IN AHB burst type signals from all masters

HADDR_ARR
[(P_MASTERS_NUM * 32) - 1 : 0]

IN AHB address buses from all masters

HTRANS [1 : 0] OUT AHB transfer type signal from selected
master

HBURST [2 : 0] OUT AHB burst type signal from selected master

HADDR [31 : 0] OUT AHB address bus from selected master
Table 17. Interface signals of AHBMasterToArbiter module

The P_MASTERS_NUM parameter defines number of masters in the testbench. The AHB arbiter
module needs to monitor AHB bus to detect if currently performed transaction is about to complete
and bus can be granted to another master. The AHB arbiter needs to monitor only the following
lines to get required information about performed transaction:

• HTRANS
• HBURST
• HADDR

The AHBMasterToArbiter module must take the above listed outputs from all masters and pass to
the arbiter outputs from currently granted master. The AHB arbiter will analyze state on the lines
and grant bus to new master when currently granted master is competing the transfer. The above
listed signals are arranged in the following vectors and connected to inputs of AHBMasterToArbiter
module:

• HTRANS_ARR
• HBURST_ARR
• HADDR_ARR

Signals from master number zero occupy the last significant bits of the vectors. Next, should be
placed signals from the master number one and so on. The HMASTER signal is used to select
appropriate slice from the vectors and pass the selected lines to the arbiter. Adding a master to the

Pulse Logic Page: 17

Verilog AHB Testbench

testbench requires updating the P_MASTERS_NUM parameters and concatenating its HTRANS,
HBURST, HADDR outputs with the same outputs from other masters. The concatenated outputs
from all masters should be assigned to HTRANS_ARR, HBURST_ARR, HADDR_ARR inputs of
AHBMasterToArbiter module.

13. License
This testbench is provided under modified BSD license. The advertising clause was removed from
the original BSD license:

Copyright (C) 2010 Pulse Logic

info@pulselogic.com.pl

This library may be used and distributed without restriction provided that this copyright statement is
not removed from the file and that any derivative work contains the original copyright notice and
the associated disclaimer.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

14. Trademarks
AMBATM is a registered trademark of ARM Limited.
Active-HDLTM is a registered trademark of Aldec, Inc.
ModelsimTM is a registered trademark Mentor Graphics Corporation.
NC-SimTM is a registered trademark Cadence Design Systems, Inc.
VCSTM is a registered trademark of Synopsys, Inc.

All other trademarks are the property of their respective owners.

Pulse Logic Page: 18

